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Random Variables
The term random variable has a technical definition that
we discussed in Psychology 310
For our purposes, it will suffice to consider a random
variable to be a random process with numerical outcomes
that occur according to a distribution law

Example (Uniform (0,1) Random Variable)

A random process that generates numbers so that all values
between 0 and 1, inclusive, are equally likely to occur is said to
have a U(0,1) distribution.
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Manifest and Latent Variables
In advanced applications, we will refer to manifest and
latent random variables
A variable is manifest if it can be measured directly
A variable is latent if it is an assumed quantity that cannot
be measured directly
The dividing line between manifest and latent variables is
often rather imprecise

Example (Manifest Variable)

Your grade on an exam is a manifest random variable.
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A continuous random variable has an uncountably infinite
number of possible outcomes because it can take on all
values over some range of the number line
A discrete random variable takes on only a countable
number of discrete outcomes
As we saw in Psychology 310, discrete random variables
can assign a probability to a particular numerical outcome,
while continuous random variables cannot

Example (Discrete Random Variable)

Suppose you assign the number 1 to all people born male, and 2
to all people born female. This random variable is discrete,
because it takes on only the values 1 and 2.
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Using Probability Distributions
Probability distributions are frequently used to provide
succinct models for quantities of scientific interest
We observe distributions of data, and assess how well the
distributions conform to the specified model
While observing the distribution of the data, we may
hypothesize the general family of the distribution, but leave
open the question of the values of the parameters
In that case, we talk of free parameters to be estimated
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Using Probability Distributions
In more complex applications, such as multilevel modeling,
we may model data emanating from a particular
distribution family at one level (say kids within a school)
At another level, we might model the parameters for the
schools as having a distribution across schools
For example, we might hypothesize that the parameters
across schools have a normal distribution
In that case, the size of the variance of that distribution
would indicate how much the schools show variation on a
particular characteristic
In the slides that follow, we shall examine some of the more
useful distributions we will encounter early in the course
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The Normal Distribution
The normal distribution is a widely used continuous
distribution
The normal distribution family is a two-parameter family
Each normal distribution is characterized by two
parameters, the mean µ and the standard deviation σ.
Shaped like a bell, the normal pdf is sometimes referred to
as the bell curve
The central limit theorem, discussed on pages 13–14 of
Gelman & Hill, explains why many quantities have a
distribution that is approximately normal
The normal distribution family is closed under linear
transformations, i.e., any normal distribution may be
transformed into any other normal distribution by a linear
transformation
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The Multivariate Normal Distribution
The multivariate normal distribution is a continuous
multivariate distribution having two matrix parameters,
the vector of means µ and the covariance matrix Σ

Any linear combination of multi-normal variables has a
normal distribution
As we saw in Psychology 310, the mean and variance of the
linear combination is determined by µ, Σ, and the linear
weights
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The Lognormal Distribution
If X is normally distributed, then y = ex is said to have a
lognormal distribution. If Y is lognormally distributed, the
logarithm of Y has a normal distribution
In R, dlnorm gives the density, plnorm gives the
distribution function, qlnorm gives the quantile function,
and rlnorm generates random deviates
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The Lognormal Distribution
It is common, when referring to a normal distribution, to
use the abbreviations N (µ, σ) or N (µ, σ2).
It is important to realize that, when referring to a
lognormal distribution for a variable Y , the convention is
to refer to the parameters µ and σ from the corresponding
normal variable X = ln(Y )
In this case, the actual mean and variance of Y are not µ
and σ2, but rather are

E (Y ) = eµ+
1
2σ2

,

Var(Y ) = (eσ2 − 1)e2µ+σ2
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Example (The Lognormal Distribution)

Here is a picture comparing the lognormal and corresponding
normal distribution.
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Applications of the Lognormal
When independent processes combine multiplicatively, the
result can be lognormally distributed
For a detailed and entertaining discussion of the lognormal
distribution, see the article by Limpert, Stahel, and Abbt
(2001) in the reading list

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

Probability Models
The Normal Distribution
The Multivariate Normal Distribution
The Lognormal Distribution
The Binomial Distribution
The Poisson Distribution

The Lognormal Distribution
Applications

Applications of the Lognormal
When independent processes combine multiplicatively, the
result can be lognormally distributed
For a detailed and entertaining discussion of the lognormal
distribution, see the article by Limpert, Stahel, and Abbt
(2001) in the reading list

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

Probability Models
The Normal Distribution
The Multivariate Normal Distribution
The Lognormal Distribution
The Binomial Distribution
The Poisson Distribution

The Lognormal Distribution
Applications

Applications of the Lognormal
When independent processes combine multiplicatively, the
result can be lognormally distributed
For a detailed and entertaining discussion of the lognormal
distribution, see the article by Limpert, Stahel, and Abbt
(2001) in the reading list

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

Probability Models
The Normal Distribution
The Multivariate Normal Distribution
The Lognormal Distribution
The Binomial Distribution
The Poisson Distribution

The Binomial Distribution

The Binomial Distribution
This discrete distribution is one of the foundations of
modern categorical data analysis
The binomial random variable X represents the number of
“successes” in N outcomes of a binomial process
A binomial process is characterized by

N independent trials
Only two outcomes, arbitrarily designated “success” and
“failure”
Probabilities of success and failure remain constant over
trials

Many interesting real world processes only approximately
meet the above specifications
Nevertheless, the binomial is often an excellent
approximation
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Characteristics of the Binomial Distribution
The binomial distribution is a two-parameter family, N is
the number of trials, p the probability of success
The binomial has pdf

Pr(X = r) =
(

N
r

)
pr (1− p)N−r

The mean and variance of the binomial are

E (X ) = Np
Var(X ) = Np(1− p)
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Normal Approximation to the Binomial

The B(N , p) distribution is well approximated by a
N (Np,Np(1− p)) distribution as long as p is not too far
removed from .5 and N is reasonably large
A good rule of thumb is that both Np and N (1− p must
be greater than 5
The approximation can be further improved by correcting
for continuity
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The Poisson Distribution
When events arrive without any systematic “clustering,”
i.e., they arrive with a known average rate in a fixed time
period but each event arrives at a time independent of the
time since the last event, the exact integer number of
events can be modeled with the Poisson distribution
The Poisson is a single parameter family, the parameter
being λ, the expected number of events in the interval of
interest
For a Poisson random variable X , the probability of
exactly r events is

Pr(X = r) =
λre−λ

r !
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Characteristics of the Poisson Distribution
The Poisson is used widely to model occurrences of low
probability events
A random variable X having a Poisson distribution with
parameter λ has mean and variance given by

E (X ) = λ

Var(X ) = λ
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Sampling Distributions
As discussed in your introductory course, we frequently
sample from a population and obtain a statistic as an
estimate of some key quantity
Over repeated samples, these estimates show variability
This variability is like noise, degrading the signal that is
the parameter
The known or hypothetical sampling distribution of the
statistic allows us to gauge how accurate our parameter
estimate is (at least in the long run)
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Sampling Distributions — An Example
Suppose we take an opinion poll of N = 100 people at
random, and 47% of them favor some position
The question is, what does that tell us about the proportion
of people in the population favoring the position?
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Sampling Distributions — An Example
In your introductory course, you learned as a simple
consequence of the binomial distribution that if the
population proportion is p, the sample proportion p̂ has a
sampling distribution that is approximately normal, with
mean p and variance p(1− p)/N
For any hypothesized value of p, this tells us, through our
knowledge of the normal distribution, how likely we would
be to observe a value of .47
We can use this, in turn, to evaluate which values of p are
“reasonable” in some sense
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Confidence Intervals
A confidence interval is a numerical interval constructed on
the basis of data
Such an interval is called a 95% (or .95) confidence interval
if it is constructed so that it contains the true parameter
value at least 95% of the time in the long run
There are a variety of methods available for constructing
confidence intervals
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Normal Theory Confidence Intervals
In Psychology 310 we leared about simple symmetric
confidence intervals based on the normal distribution
If a statistic θ̂ used to estimate a parameter θ has a normal
sampling distribution with mean θ and sampling variance
Var(θ̂), then we may construct a 95% confidence interval
for θ as

θ̂ ± 1.96
√

Var(θ̂)

In general, a consistent estimator V̂ar(θ̂) may be
substituted for Var(θ̂) in the above
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Confidence Intervals on Linear Combinations
As we saw in Psychology 310, frequently linear
combinations of parameters are of interest
In that case, we can construct appropriate point estimates,
standard errors, test statistics, and confidence intervals
Methods are discussed in detail in the Psychology 310
handout, A Unified Approach to Some Common Statistical
Tests

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals on Linear Combinations

Confidence Intervals on Linear Combinations
As we saw in Psychology 310, frequently linear
combinations of parameters are of interest
In that case, we can construct appropriate point estimates,
standard errors, test statistics, and confidence intervals
Methods are discussed in detail in the Psychology 310
handout, A Unified Approach to Some Common Statistical
Tests

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals on Linear Combinations

Confidence Intervals on Linear Combinations
As we saw in Psychology 310, frequently linear
combinations of parameters are of interest
In that case, we can construct appropriate point estimates,
standard errors, test statistics, and confidence intervals
Methods are discussed in detail in the Psychology 310
handout, A Unified Approach to Some Common Statistical
Tests

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals on Linear Combinations

Confidence Intervals on Linear Combinations
As we saw in Psychology 310, frequently linear
combinations of parameters are of interest
In that case, we can construct appropriate point estimates,
standard errors, test statistics, and confidence intervals
Methods are discussed in detail in the Psychology 310
handout, A Unified Approach to Some Common Statistical
Tests

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
In some cases, we are interested in a function of parameters
We know the distribution of individual parameter
estimates, but we don’t have a convenient expression for
the distribution of the function of the parameter estimates
In this case, we can simulate the distribution of the
function of parameter estimates using random number
generation
To generate the 95% confidence interval, we extract the
.025 and .975 quantiles of the resulting simulated data

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
In some cases, we are interested in a function of parameters
We know the distribution of individual parameter
estimates, but we don’t have a convenient expression for
the distribution of the function of the parameter estimates
In this case, we can simulate the distribution of the
function of parameter estimates using random number
generation
To generate the 95% confidence interval, we extract the
.025 and .975 quantiles of the resulting simulated data

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
In some cases, we are interested in a function of parameters
We know the distribution of individual parameter
estimates, but we don’t have a convenient expression for
the distribution of the function of the parameter estimates
In this case, we can simulate the distribution of the
function of parameter estimates using random number
generation
To generate the 95% confidence interval, we extract the
.025 and .975 quantiles of the resulting simulated data

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
In some cases, we are interested in a function of parameters
We know the distribution of individual parameter
estimates, but we don’t have a convenient expression for
the distribution of the function of the parameter estimates
In this case, we can simulate the distribution of the
function of parameter estimates using random number
generation
To generate the 95% confidence interval, we extract the
.025 and .975 quantiles of the resulting simulated data

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
In some cases, we are interested in a function of parameters
We know the distribution of individual parameter
estimates, but we don’t have a convenient expression for
the distribution of the function of the parameter estimates
In this case, we can simulate the distribution of the
function of parameter estimates using random number
generation
To generate the 95% confidence interval, we extract the
.025 and .975 quantiles of the resulting simulated data

Multilevel Basic Probability Concepts



Random Variables
Probability Distributions

Sampling Distributions
Confidence Intervals
Hypothesis Testing

The Classic Normal Theory Approach
Confidence Intervals on Linear Transformations
Confidence Intervals Via Simulation

Confidence Intervals Via Simulation
An Example

Example (Confidence Intervals Via Simulation)

An example of the simulation approach can be found on
page 20 of Gelman & Hill
They assume that, with N = 500 per group, the
distribution of the sample proportion can be approximated
very accurately with a normal distribution
In the problem of interest, the experimenter has observed
sample proportions p̂1 and p̂2, each based on samples of 500
However, the experimenter wishes to construct a confidence
interval on p1/p2.
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Example (Confidence Intervals Via Simulation)

The experimenter proceeds by constructing 10000
independent replications of p̂1 and 10000 replications of p̂2

For each pair, the ratio p̂1/p̂2 is computed
This creates a set of 10000 replications of the ratio of
proportions
The 95% confidence interval is then constructed from the
.025 and .975 quantiles of this set of 10000 ratios
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Hypothesis Testing
Gelman and Hill make a number of interesting points in
their brief discussion
They suggest viewing a hypothesis as a model about the
data
Testing the hypothesis involves comparing the behavior of
the data with the data predicted by the model
For example, if proportions are showing their standard
random variation, this implies something about the size of
that variation
They examine this notion in an extensive example
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